onardoteriotics / Ordering Code

Proportional flow control valves of the series DUR*L06 are used to generate pressure-compensated flow from A to B. The valve is equipped with a built-in check valve for the return flow.

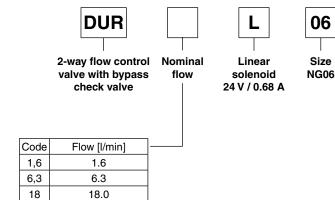
For meter-in and meter-out control of an actuator a rectifier plate can be used.

Function

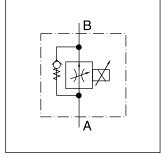
When solenoid current is applied, the metering spool opens against the reset spring and the flow is regulated by the pressure compensating spool to port B.

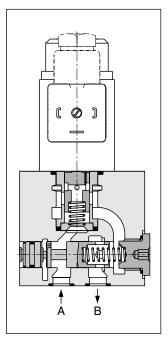
With the aid of the pressure compensating spool, the pressure drop is held constant on the metering window. Thus pressure load changes are compensated, and the oil flow remains constant.

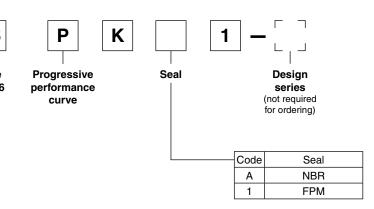
In combination with the digital electronic module PCD00A-400 the valve parameters can be saved changed and duplicated.

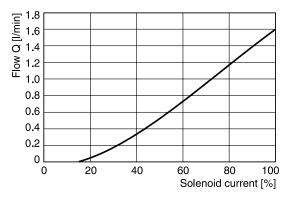

Features

- · Low hysteresis
- High reproducibility
- · Load-independent oil flow
- Bypass check valve
- Mounting pattern to ISO 6263
- 3 flow rates

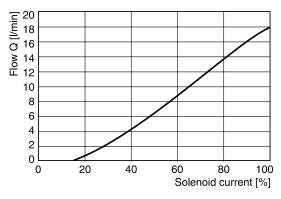

Note


Rectifier plate and subplates see 'Accessories' at the end of this chapter.

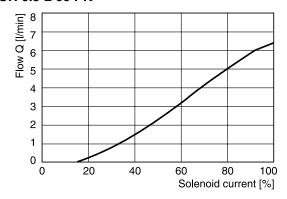

Ordering code


Technical Data / Performance Curves

Technical data


Design			Electrically adjustable orifice valve with load sensing									
Mounting typ)e		Subplate NG06, interface DIN 24340, ISO, CETOP									
Mounting pos	sition		Unrestricted, horizontal mounting preferred									
Ambient tem	nperature	[°C]	20+60									
MTTF _D value)	[years]	150									
Weight		[kg]	1.6									
Type of volta	ge	[V]	24									
Solenoid nor	ninal current	[mA]	680									
Duty cycle			100 % ED									
Solenoid con	nection		Connector as per EN 175301-803									
Protection cla	ass		IP 65 in accordance with EH60529 (with correctly mounted plug-in connenctor									
Amplifier mo	dule		PCD00A-400									
Operating pro	essure	[bar]	max. 210									
Fluid			Hydraulic oil according to DIN 51524									
Fluid tempera	ature	[°C]	-20+70 (NBR: -25+70)									
Viskosität,	permitted recommended	[cSt] / [mm²/s] [cSt] / [mm²/s]										
Filtration			ISO 4406 (1999); 18/16/13									
Min. pressure	e difference	[bar]	DUR 1.6/: 3; DUR 6.3: 5; DUR 18: 8									
Hysteresis at	t Q _{nom}	[%]	6									
Hysteresis at	t Q ≤ 20 % • Q _{nom}	[%]	6									
Repeatability	V at $\Delta U_{set} = 5 V$	[%]	2									

Performance curves


DUR 1.6 L 06 PK*

DUR 18 L 06 PK*

DUR 6.3 L 06 PK*

All characteristic curves measured with HLP46 at 50 °C.

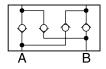
Mounting pattern 65 60 40.5* 33.0 30.2 12.7 46.5 90 M5x10 deep Ø4x4 deep Shown rotation by 15° PG11 Ø] 118.5 0 22

Bolt kits (Cylinder head ISO 4762-12.9 not included)

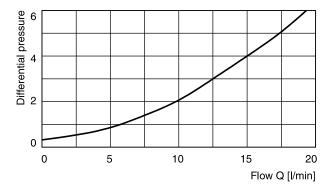
	Nominal size	Valve model	Quantity	Tightening	Valve without	rectifier plate	Valve with rectifier plate				
1	Valve	valve illouei	Qualitity	torque [Nm]	Dimensions	Order No.	Dimensions	Order No.			
	NG06	DUR*L06	2	7.6 Nm	2x M5x60	BK380	2x M5x100	BK466			

Seal kits

NBR	FPM
SK-DUR***L	SK-DUR***L FPM

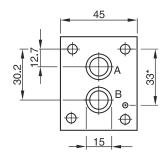


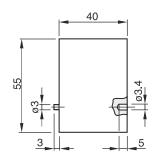
Sandwich rectifier plate

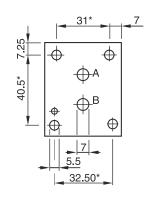

If a 2 way flow control valve is used in combination with a rectifier plate the valve can be used for meter-in and meter-out flow control of an actuator.

Design

The intermediate rectifier plate is designed with 4 identical, symmetrically arranged check valves. Thus the differential pressure is the same in both flow directions.




∆p/Q-curve



Measured with HLP46 at 50 °C.

Dimensions

Dimension tolerances

* : \pm 0.1mm others : \pm 0.2 mm

holes and silhouette of valve body: untoleranced dimension

Ordering code: HR OA 06 C

O-ring for sealing the connecting surface

Connections	Dimensions	required units						
A, B	12 x 1.5	2						

Subplates 1)

Ordering code	
SPD 22 B 910	P, A, B and T = G1/4
SPD 23 B 910	P, A, B and T = G1/8

¹⁾ Details see chapter 12, series SPD.

Catalogue MSG11-3500/UK Notes										2- S e	wa Prie	ay es	Pro D l	JR	orti *L(on 06	al I	-lo	w	Cc	ntı	rol	Va	ilve	<u>)</u>					
																												—	—	
		-	-																											
																									_					
																					_				_				-	
																									_				-	
																													-	
		+																												

